Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1.
نویسندگان
چکیده
We investigated metabolic engineering of fermentation pathways in Escherichia coli for production of optically pure D- or L-lactate. Several pta mutant strains were examined, and a pta mutant of E. coli RR1 which was deficient in the phosphotransacetylase of the Pta-AckA pathway was found to metabolize glucose to D-lactate and to produce a small amount of succinate by-product under anaerobic conditions. An additional mutation in ppc made the mutant produce D-lactate like a homofermentative lactic acid bacterium. When the pta ppc double mutant was grown to higher biomass concentrations under aerobic conditions before it shifted to the anaerobic phase of D-lactate production, more than 62.2 g of D-lactate per liter was produced in 60 h, and the volumetric productivity was 1.04 g/liter/h. To examine whether the blocked acetate flux could be reoriented to a nonindigenous L-lactate pathway, an L-lactate dehydrogenase gene from Lactobacillus casei was introduced into a pta ldhA strain which lacked phosphotransacetylase and D-lactate dehydrogenase. This recombinant strain was able to metabolize glucose to L-lactate as the major fermentation product, and up to 45 g of L-lactate per liter was produced in 67 h. These results demonstrate that the central fermentation metabolism of E. coli can be reoriented to the production of D-lactate, an indigenous fermentation product, or to the production of L-lactate, a nonindigenous fermentation product.
منابع مشابه
Metabolically Engineered Escherichia coli RR1
We investigated metabolic engineering of fermentation pathways in Escherichia coli for production of optically pure Dor L-lactate. Several pta mutant strains were examined, and a pta mutant of E. coli RR1 which was deficient in the phosphotransacetylase of the Pta-AckA pathway was found to metabolize glucose to D-lactate and to produce a small amount of succinate by-product under anaerobic cond...
متن کاملEfficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli
BACKGROUND Due to its abundance and low-price, glycerol has become an attractive carbon source for the industrial production of value-added fuels and chemicals. This work reports the engineering of E. coli for the efficient conversion of glycerol into L-lactic acid (L-lactate). RESULTS Escherichia coli strains have previously been metabolically engineered for the microaerobic production of D-...
متن کاملHomofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B
BACKGROUND Polylactic acid (PLA), a biodegradable polymer, has the potential to replace (at least partially) traditional petroleum-based plastics, minimizing "white pollution". However, cost-effective production of optically pure L-lactic acid is needed to achieve the full potential of PLA. Currently, starch-based glucose is used for L-lactic acid fermentation by lactic acid bacteria. Due to it...
متن کاملEscherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol.
Given its availability and low price, glycerol has become an ideal feedstock for the production of fuels and chemicals. We recently reported the pathways mediating the metabolism of glycerol in Escherichia coli under anaerobic and microaerobic conditions. In this work, we engineer E. coli for the efficient conversion of glycerol to d-lactic acid (d-lactate), a negligible product of glycerol met...
متن کاملEngineering the xylose‐catabolizing Dahms pathway for production of poly(d‐lactate‐co‐glycolate) and poly(d‐lactate‐co‐glycolate‐co‐d‐2‐hydroxybutyrate) in Escherichia coli
Poly(lactate-co-glycolate), PLGA, is a representative synthetic biopolymer widely used in medical applications. Recently, we reported one-step direct fermentative production of PLGA and its copolymers by metabolically engineered Escherichia coli from xylose and glucose. In this study, we report development of metabolically engineered E. coli strains for the production of PLGA and poly(d-lactate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 65 4 شماره
صفحات -
تاریخ انتشار 1999